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A new type of discontinuity surfaces which it is necessary to use in certain mod- 

els of media devoid of proper pressure is considered. 

Models of media devoid of proper pressure and containing a new type of discontin- 
uity surface are fairly widely used for defining various flows such as dispersed compon- 

ents of multiphase mixtures, investigated in the approximation of multi-fluid continu- 

ous medium, motion of liquid drops in regions of disintegration (“splitting off’) of the 
liquid continuity that occur in fast processes in pulsed type equipment, collision of 
hypersonic streams in the limit case of infinite compression (increase of density) at 
shocks, etc. The main feature distinguishing such discontinuities from shock waves and 
contact (tangential) discontinuities in classical gasdynamics is associated with finite 
surface (or even linear) densities at these. Owing to this the discontinuity has its 
proper mass, momentum, and energy whose variation is in particular due to the precipi- 
tation from it of matter of the same phase. Similarly to surface charges and currents 

in electrodynamics and magnetogasdynamics of perfectly conducting media, the 

finite surface and linear densities and the related to these infinite volume densitiesare, 
evidently, the result of schematization introduced in the construction of the model of 
a medium. 

1. Let us, first, look at what happens to the equations defining the flow of a per- 

fect (inviscid and non-heat-conducting) medium when pressure p = 0 and density 

P + 0 l 
The input system of differential equations of a perfect medium contains 

grad p in the equation of motion and p / p in the formula i = e + p / p for 
specific enthalpy ( e is the specific internal energy). Thus, for example, if pressure 
is disregarded in the equations of one-dimensional unsteady flow, the equation of mot- 
ion becomes 

du I at + uau / dx = 0 (1. 1) 

where t is the time, x is a space coordinate, and u is the x -component of the 
velocity vector. Equation (1.1) is usually used for illustrating the properties of discon- 

tinuous (generalized) solutions. It is shown (see, e.g., [1] ) that the properties of dis- 

continuities ( particularly their propagation velocity D) depend on the relation of the 
integral equation taken as the input one to (1.1). Thus, if the integral equation 

$ udx-;dt =0 
0 

(1.2) 

where y is an arbitrary closed contour in the xt -plane, is taken as the input equation, 
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then 
D = (U+ + U_) / 2 

(1.3) 

where, and in what follows, the subscript plus (minus) denotes parameters to the right 
(left) of the discontinuity. A discontinuity of this type obtains only when u- > u+ 
and when it moves at higher absolute velocity than the particles ahead of it but lower 

than those behind it. This situation is shown Fig. 1, a and b in which the discontinu- 
ity (the dcuble line) propagates, respectively, to the right (D > 0) or to theleft (D < 

0) l 

The separate continuous lines represent the particle trajectories dz/ dt = ZL 

a b 

d e 

Fig. 1 

which are characteristics of Eq. (1.1). When U_ < U, instead of a discontinuity 

a centered rarefaction wave is formed (Fig. 1, c ) in which U assumes all values 

contained between u_ and u,. 

Actually there is no arbitrariness in the selection of the differential equation (or 
equations), since the input laws are defined in integral, not differential form. More 

exactly, even when such arbitrariness exists, the various integral laws of conservation 

(e. g., of momentum and moment of momentum) yield the same not different relation- 

ships (as well as differential equations) at discontinuities. 
Thus when p z 0 and p + 0 the system of integral equations of a one-dimen- 

sional unsteady flow with plane waves is of the form 

(P ’ pa (dx - udt) = 0 (1.4) 
i 

where u is a vector with components 1 , u and 2.2 -!- ua. System (1.4) relates to 

the case when the stream is directed along the 5 -axis. Relations at discontinuities 

that do not have “surface” density are derived from (1.4) in the usual manner. We 

have 
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IP @ - u)] = 0, [p (r> - U) ~1 = 0, Ip (D - u)(Ze + us)1 = 0 (1.5) 

(Icpl = cp* - cp-) 

It is seen that at this type of discontinnities, as well as on ordinary contact discon- 

tinuities D = ZL_ = u+. Hence generally, as for instance in the problem of dis- 
~tegration of an arbitrary d~onti~ity when u_ # u, , d~con~i~~ different 
from (1.5) that carry mass, momentum, and energy are required for constructing the 
model, The relations that have to be satisfied at such ,discontinuities are also obtain- 

ed from (1.4). and are of the form 

dR / dt = [p (D - u)l, dRD / dt = [p (D - u) ul 

dR (2E + De) I dt = [p (I, - rt)(2e -I- u2)l 

(1.6) 

where d / dt is the total derivative with respect to t taken along the trajectory of 
the discontinuity, R is the surface density, RE is the surface internal energy (energy 
of unit surface area), and E is the specific internal energy (per unit of mass at the 
discontinuity. 

GeneralIy, according to (1.6) R, D , and E of similar discon~ities are deter- 
mined by the whole previous history of variation from the instant of formation.The self- 
similar problem of an arbitrary discontinuity disintegration is in some sense an excep- 

tion. Let us consider that problem, since its solution is interesting not only in itself, 

It provides initial values of R, D and E for any discontinuous distributions of para- 

meters, i. e. p, u , and e at t = 0. The dimensional analysis of the considered 
self-similar problem shows that D and E are constants, and R = j3t where p is 

also constant. Form this and (1.6) we have 

B = [P (D - u)l, fro = [p (D - u) ul (1.7) 

B (2E + D2) = [p (D - u)(2e + u2)l 

~m~ation of /3 from the first two equalities of this system yields a quadriatic eq- 
uation for I) whose root is 

D = (~,a+ + n-a_) / (a+ + a-), a = 1c/P (1.8) 

which for u_ > u+ satisfies the inequalities u_ > D > Ut which represent con- 
ditions for the particles to reach the discontinuity from both sides. 

Values of fi and E are then obtained from the first and third of Eqs. (1.7). When 

u+ = ZJ- from (1.8) we have D = LQ. = u- and, by virtue of (1.Q also@ = 0. 
Thus in this case (1.7) and (1.8) yield the same results as (1.. 5). This is obvious, 
since the discontinuities at which conditions (1.5) are satisfied represent a particular 

case of discontinuities that satisfy conditions (1.6) wben R = 0, while p = 0 
implies that R = fit = 0. In the case of root (3.8) the discontinuity and particle 
trajectories are the same as in the case of ( $3JS_ i. e. they conform to Fig. 1, a and 
b . Moreover, when p+ = p_ (1.8) reduces to (1.3). The second root of the 
mentioned above quadratic equation is D = (~+a+ - ~.a_) / (a+ - a_) and corr- 
esponds to cases represented in Fig. 1, d and e . Unlike in Fig. 1, a and b , here 
the particles reach the discontinuity not from two sides, but from one side and leave 
it from the other. Which side is which when U_ > u, depends only on the relation 
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between p_ and P+ . Thus Fig. 1, d corresponds to p+ < p_ and Fig. 1, e to 
P+ i P_. Although in the absence of some special supplementary mechanisms, 

the emission of particles by the discontinuity appears physically unreal, it cannot be 
excluded that in some situations the second root may prove to be useful in spite of 
the fact that it defines an infinite velocity of the discontinuity when p+ = p_ . 

When U+ > U_ a new region free of particles @ = 0) is cLeated by the dis- 
integration of an arbitrary discontinuity in the system defined by Eqs. (1.4),In Fig. 1, f 

a 

Fig. 2. 

b 

that region is shown shaded by horizontal lines. This case was recently considered by 
G.A. Antonov in the problem of splitting off. When U, > U_ it is possible to derive 
two more solutions with discontinuity (1.7) which correspond to both roots for D. 
However these solutions, unlike the previous one, are “unstable” with respect to small 

“smoothing’ of the initial discontinuity. The respective reasoning is similar to that 
used, for instance in [l] in the analysis of a similar situation in the case of (1.1) and 

(1.2). We would, finally, draw the attention to the difference in the cases represent- 

ed in Figs. 1, c and f. 

2. Let US now consider two comparatively simple problems in which the medium 
can be considered as being to some extent devoid of proper pressure. First, we shall 

try to show to what correspond in gasdynamics the investigated above discontinuities 

which we shall subsequently call “sheet type”, or simply ” sheet” discontinuities. For 

this we shall consider the self-similar problem of collison of two uniform streams of 

gas. Let the relative velocity of the streams be hypersonic, i. e. considerably higher 
than the speed of sound in each of them. The result of the interaction is the genera- 

tion of two shock waves which bound the shock or compressed layer, as shown in Fig. 

2,a. The gas reaches the compressed layer through both shock waves with the densit- 

ies p+ and F- of gases entering that layer from different sides being, generally, 

unequal. These gases are separated by a contact discontinuity (the dashed line in Fig. 

2, a). The distribution of pressure and velocity in the compressed layer is unform, i. e. 
+= P p- = P and u+ = u- = D. We assume that the relative propagation vel- 

ocitis of shock waves through the gas upstream of them (D, - u*) is considerably 

higher in absolute value than the respective speeds of sound a+, i. e. M, = 1 D+ 
- ql/“+ >I l 

Then on the strength of the condition of momentum conservation 

at the shock it is possible to omit, as shown in [Z], the oncoming stream pressures 

P+ or P-. To sum up, the conditions for both shocks assume the form 
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p + p+ (D, - Iv2 = p+ (D, - z&+)2 
p + p- (D._ - ma = p_ (I>_ - u_)” 

Eliminating in these equalities P and applying the conditions of conservation of 
mass 

P’ V&b - D) = P* (D* - u*I) (2.11 
we get rid of P4 and P- , which yields the relationship 

P+ (D, - u,)” - P* (D, - U+)(D, - D) = P- (D_. - u-1” - 
(2.2) 

P... (D_ - u_)(D_ - 0) 

Let now the compression of gas in the shocks increase as M& --f 00 , which 
means that the ratios P*/ p& also tend to infinity. In the case of perfect gas with 
adiabatic exponent x these ratios tend to 8-r zz (X f ‘i) / (X - 1), and this means 
that 1c --f 1 and e --+ 0. Then, as implied by the condition of conservation of the 
energy flux at the shock, an infinite compression requires that M, > ~“/a. If 

PYPi -+ 00, then in conformity with (2.1) D+ -+ D, which makes it possible 
to omit the second terms in (2.2). Extracting the square roots of both parts of the 
obtained equalities we obtain both roots of D in Sect. 1. However, since in our 
problem the gas penetrates the compressed layer through both shocks, only the first 
root, i. e. (1.8), has any physical meaning. If we introduce for the shock layer whose 
thickness for E = 0 is also zero the surface density R and the specific internal 
energy E, the equations for the determination of these roots coincide with (1.7) and 
for no~elf-si~lar problems with (1.61. It is permissible to introduce the surface ten- 
sion R also when E > 0. For its determination we obtain the equation 

dR 
- -= p+ (D, - u+) - (‘_ (D_ - 1(_) E [p (D - Lb)] + 

dt 
(2.3) 

-g (D, - 11,) - $ (fl_ - u_), 

.CC,(f) 

R (I) = \ f’ (J-3 f) & 
X_(f) 

where r -- x4 (t) is the equation of shock wave trajectories and the second form 
of the right-hand side is obtained from the first with allowance for (2.1). As shown 
above, the right-hand side of (2.3) tends to [p (D - u)] with increasing ratios 

N:fp* l Hence for E # 0 its second and third terms define the error of the model 
of a medium with zero proper pressure, 

in the example of “hypersonic” collision of streams just considered pressure may 

only be disregarded outside the shock layer, Since in the layer p s P -+ 03 as 
E + 0, the pressure cannot, obvicusly, be neglected. However even in the latter 

case the introduction of sheet type discontinuities yields a picture of flow outside shock 

layers that is qualitatively (and when e = 0 also quantitatively) correct. Moreover 
in many cases the width of these layers, which decreases as E -+ (I , can be small 
in comparison with the characteristic dimension of the problem. 

bet us now consider another problem which also has an exact solution. In the 
previous problem the gas outside the shock layer had a proper pressure but its con- 
tribution to momentum and energy streams was negligibly small. Let now the proper 
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pressure be altogether absent, and the investigated medium be an aggregate of nonin- 

teracting particles. In such case with U_ > u, the problem of discontinuity disinte- 
gration contains a ” compressed” layer into which particles penetrate from right and 
left (Fig. Z,b), and the volume density p = p+ i- p_ , although exceeding both p+ 
and p_, does not tend to increase infinitely. In strong rarefaction when the effect 

of collisions in the layer is immaterial, the flow in it is of the l’two-velocity” type. 

This featlrre (conversion fom one- to two-velocity model) makes possible to derive 
a solution without the sheet, as shown in Fig. 2, b. It is, however, possible to introduce 
also in this case the surface density R = (p, -i- p..) (L-C,, - x_), with the nonzero 
value of R being due to the finiteness of (X+ - x_) and not to the in&-rite increase 
of volume density. Owing to particle collisons, which always takes place, the stream 

of particles cannot freely penetrate through one another. This results in the increase 
of p in the compressed layer whose width diminshes. As p increases the collision 

frequency and the proper pressure increase, so that it becomes ultimately necessary to 
take pressure into account. For example, in the problem of sptitting off the latter ob- 
viously wiU take place after p+ f p_ exceeds a certain critical value p0 which is 
a physical characteristic of the medium. After this the interaction of the type shown 
in Fig. 2, b is transformed in a collision with the formation of a shock layer (Fig. 2, a) 
in which the medium recovers its “continuity”. As far as the author is 
aware, this feature has not been given due attention, even in the determination of flows 

with splitting off by the method of Godunov (as shown in [9], solution of the problem 
of discontinuity disintegration is at the basis of this method ). 

Finally we point out the rather peculiar character of “convergence” which has to 

be expected in the numerical integratron of system (1.4) by the method of “through” 

computation. If h is the pitch of the difference grid, its reduction (h + 0) results 
in the increase of volume density on the “blurred” sheet in proportion to h-l. In the 
case of the single-fluid model this should not be harmful, on the contrary, it proves 
tne correctness of obtained results. Outside the sheet the convergence of results is 

conventional. 

3. The most important example of media without proper pressure is the dispersed 
phase of a mixture of gas and foreign particles. As previously, discontinuities of the 

sheet type must be introduced here when intersection of trajectories (or streamlines) of 
particles occurs, in spite of this, the analysis is carried out as before using the two- 

fluid model (one “fluid” is the gas, the other particles). Let us pass to the invesiga- 

tion of such discontinuities, bearing in mind that the parameters of gas when the latter 
passes through the sheet are altered jumpwise owing to the finite action of particles. 

Note that such discontinuities were not previously investigated in the analysis of 

discontinuity surfaces in two-fluid continuous medium (see, e. g. [4,5]. The first in- 

dication of the formation of a sheet appears to have been given in [6], although some 
concepts to some extent related to similar discontinuities were earlier formualted by 

A. M. Giliarovskaia and R E. Sorkin. 
Without going into the main assumptions on which the model of a two-fluid con- 

tinuous medium of the consrdered type is based, we adduce the integral laws of con- 
servation that will be necessary subsequently. Let Q be an arbitrary volume independ- 

ent of t completely filled by at least one of the interacting media, cr its boundary, 
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n the unit vector of the cuter normal to o , and U, = U -II , where U is the 
velocity vector. The parameter of (the second phase) particles will be denoted by subscript 

s, while those of gas ( the carrier phase) will be denoted by tne same letters but 
without subscripts. The integral laws of conservation which define the flow of a mix- 
ture of gas and particles in the two-fluid approximation can now be written in the form 

where f 
particles, 

is the specific force (per unit of particle mass) with which the gas acts on 
q is the specific heat flow from gas to particles; f and q are assumed 

to be everywhere, particularly on the sheet, known functions of parameters of both 

media. Then (3.1) has a meaning for any (including discontinuous) parameter distri- 

bution, for instance, for a sheet for which the surface density is finite when p, is 
infinite and, also, for lines called below “strings”, along which it is the linear, not 

the surface density that is finite. We shall denote the surface and linear parameters 
of the sheet and string, respectively, by superscripts u and 1. Thus p9 denotes the 
surface density per unit of the sheet surface, and ps’ the linear density of particles 
per unit of string length. 

Without going into the subject of tangential discontinuities of gas and particles, 

and on shock waves (in the gas), which was considered earlier, we draw the attention 

to the following. when the volume of particles is neglected, as assumed below, the 
parameters of gas at tangential discontinuities of particles are continuous, while the 

parameters of gas in transition through tangential discontinuities in gas and, also, 
shock waves become discontinuous [4,5]. If in the last two cases f and Q are finite, 
the parameters of particles retain their continuity over these discontinuities. In this 

case the explicit form of f and q is unimportant. It will become clear subsequently 
that the same requirements apply to the definition of f and Q in the case of the string. 
The knowledge of expressions for f and q is generally necessary, although ever here 
there can be situations when a considerably lesser information may suffice, 

The difference in the required Information about f and q on the sheet and on 
other discontinuities is due to two factors. First, particles move along the sheet with- 
out intersecting it. Second, the density ps on the sheet is inifinte (for finite psO) 
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and this results in finite changes of parameters of the gas flowing through the sheet. 
Hence explicit expressions for f and 9 are required for both, the definition of mot- 
ion of the sheet itself and for the determination of gas parameter jumps on it. The 
density pS in the string is so great (when PS’ is finite) that the flow of gas past it 
is like the flow past a thin hard filament and for finite fz and & does not affect 
its motion, and since f’ and Y’ are quantities defined per unit of particle mass, 

the assumption of their finiteness is reasonable. 
II-I deriving the relationships on the sheet we shall limit the analysis to the steady 

flow. bet (T be an arbitrary small area of the sheet whose boundary is y , and the 

unit vector of the normal to (5 , i. e. n is oriented along the stream. By definition 

n-U,0 = 0 (3.2) 

Let N be the unit vector of the outer normal to 7 and tangent to sheet u& = 
US”. N, and U, = U - U,n be the component of U tangent to the sheet. The 
relations on the stationary sheet are then by virtue of (3. I), of the form 

[pU,] = 0, [p f pli,‘] + ps”f,l” = 0, (pU,)_ [UT1 + psUfP = 0 (3.3) 
(pU,)_ [II -i- PsO Ws"fU -t 47 = 0 

where f (J and fp are the respective components of f”. Note that in this 

model aczording to the last of Eqs. (3.3) an exchange of kinetic and internal energies 

takes place in “the gas of particles” at the sheet, although there is no such exchange 

outside the latter. 
If the vector Ao tangent to the sheet has a continuous component A$’ normal 

to any curve y on the sheet, then formula 

(3.4) 

with the I* divergence operator’* V, on CI , is valid. 
Let Ak be the projection of A on the k -axis of a Cartesin coordinate system. 

Then, when (3.4) holds, the last three of equalities (3.3) yield the equations in part- 
ial derivatives with two independent variables (e. g., curvilinear orthogonal coordinat- 

es on o ) which must be satisfied by the continuous surface parameters of particles on 

the sheet 
v* (E)SOUSO) + [pJ,,,I =- 0 (3.5) 

v, (PSOUpUSk.a) i- [&USllUSh_l - &(Jfh.O = 0 

v, (p,Ou,“E,O) + [psU,,E,l - pso (Wf@ + s”) = 0 

The transition in (3.5) from V, to an operator defined in Cartesian or other 
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coordinates is carried out in the conventional manner. Without doing this for the 

general case, we rewrite (3.5), as an example, for plane and an axisymmetric flows. 

In conformity with (3.2) and (3.5) the relationships 

2’ = zL,o / V*O, Y’ = vs’s / Vgfl, (Y“PSOV$) + Y” [P&l = 0 (3.6) 

(Y”P*0~8%0)’ + YV ([PJ&l - PS”fXO) = 0 

(Y”ps”v.s~vP)’ + YY ([p,V,,v,l - p9f,0) = 0 

(YvP*Ov*“r*O)’ + YV ([PJLJJ - Ps’sYVrqo) = 0 

(YVP,‘TVsU&‘S)’ + YV {[psV,E,l - ps” (U,+J + QO)} = 0 

are satisfied on the sheet besides the first four of finite equalities (3.3). In (3.6) the 
prime denotes the derivative dl dr , where T is the distance measured along the 
line of intersection of the sheet with the ZY-plane; xyz or .ryo are Cartesian 
or cylindrical coordinates; v = 0 and 1, respectively, in the plane and axisymmet- 
ric cases; indices Z, y, z and w denote projections of f(J on respective axes; I’ 

= yyw; projections of U on coordinate axes are denoted by U, V and w , and 

V is the “meridional” component of LT , and V = v/u” + v2. 
~1 some cases, for instance when the sheet is formed in the plane of symmetry 

u,_ = un+=o, the gas does not intersect it. Here the first of Eqs. (3.3) is 

automatically satisfied, the second yields a zero compression jump [p] = 0 because 

of f,” = 0 , and the third and fourth yield fZa = 0 and q0 = 0. Since in the 

case of sheets of similar type f’ and @ fall out from (3.3), (3.5), and (3.6), ex- 

plicit expressions for f” and @ are unnecessary. As regards the particles whose 
streamlines lie on the sheet, we have, in accordance with the previously obtained eq- 

ualities, Up = U,,o and To = Tao, where T is the temperature. Here and 

above it was assumed that f’ N U - U, and q N T - T, , hence when qGr f”, 
or any component of fa indicates that the temperature and velocity of gas and 

particles or their components are the same. 
When trajectories intersect “particles of the sheet”, a discontinuity line, called 

above the string and characterized by the finite linear density f&r, ,is generated on 
the sheet. The relations that are satisfied along the steady string are readily obtained 
from the last three of Eqs. (3.3). Without adducing these, we would point out that 

along the string we have, owing to pP becoming infinitely great, the equalities 
f’ - 0 and qz = 0. Hence explicit expressions for f’ and q’ are generally 

not required, and the string itself is a “singular’ streamline of the gas, which in no 

way affects the flow of gas outside the string. Sometimes the string may appear not 

on the sheet but in the region of the stream continuity. As an example, we point out 
the possibility of string formation on the axis of symmetry of an axisymmetric stream. 

The instant and the point or line of origin of the string or sheet are determined by con- 
ditions similar, to those of shock wave generation in gasdynamics. As a rule, the 
surface or linear density of particles at the point or along the line of “origin” is zero. 
The exception is the focusing of particle trajectories (streamlines), and as well as 
the already considered in essence in Sect. 1 discontinuity formed on the line or surface 
of “input data”. 
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4. Let us consider some of the singularities resulting from the introduction of the 
sheet in electro-gasdynamics. In the case of two-fluid model (gas and charged parti- 
cles) to which the subsequent analysis is confined, these singularities are as follows. 
Let E be the electric field intensity, the gas permittivity be equal to that in vacuum, 

the magnetic field intensity be negligibly small, and g and g” be the volumes and 

surface densities of particle and sheet charges, respectively. If 6 is the charge per 
unit mass of particles, then g = 6p, and g” = 6pp . For the components E,, and 
E, of vector E , respectively normal and tangent to the sheet, we have 

The equation of motion for the sheet must take into account all forces, including 
the electrical, external to the considered sheet element. The component of these 

forces tangent to the sheet is 6p,u E,. Projection of these forces on the normal to the 
sheet is calculated using the respective components of intensity of the field generated 
by charges “external” to the particular element. Neglecting the sheet thickness it 

possible to show that (En+ -I- En_) / 2 defines that component and, consequently 
that the sought projection is 6pp (En+ + En_) / 2. 

WithOUt going into details, we note in conclusion the following. The appearance 
in the above investigation of the sheet and string is not much of a “physical pheno- 
menon” s as the result of the specific model (one-, two- fluid, etc. ) of continuous 
medium. Hence one should not be surprised by the notion of ps becoming infinit- 

ely great, i.e. exceeding the density of particle material, or that the sheet of electric- 

ally charged particles does not in this approximation scatter owing to repulsion of like 

charges. This aspect limits the value of the analysis of the sheet development. We 

shall, nevertheless, point out that in the two-fluid model with uncharged particles the 
sheet is evolutionary, when particles reach it from both sides and the normal velocity 

components of gas (in a coordinate system attached to the sheet) are either sub- or 

supersonic ahead of and behind the sheet. When these conditions are not satisfied an 

uncharged sheet becomes nonevolutionary. 
The passing to a multi-fluid model with unlimited number of media is one of the 

devices for eliminating discontinuities of the sheet and string type. It is analogous to 
taking into consideration viscosity and heat conduction which blurr compression shocks 

in a perfect gas. One should however bear in mind that passing to more than two- 

fluid models not only complicates calculations but, also, requires additional informa- 

tion about the interaction between various media. In models which admit the sheet 

and string the required information is of a more *’ phenomenological” kind, and reduc- 

es to the specification of expressions for f” and q’ . As previously indicated, it 

is possible in many cases to avoid these expressions. Moreover, the interaction be- 

tween particles on intersecting trajectories reduces the width of the multi-fluid zones 
and, thus, reduces the errors associated with the substitution of discontinuities of the 

considered type for such zones. Finally, we would point out that the preVLouslY in- 
vestigated in electro-gasdynamics discontinuities with a surface charge [7] differ 

from discontinuities of the sheet type. 

The author thanks V. L Kopchenov, L. E. Sternin, and A. B. Vatazhin for use- 

ful discussions. 
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